ElimLin Algorithm Revisited
نویسندگان
چکیده
ElimLin is a simple algorithm for solving polynomial systems of multivariate equations over small finite fields. It was initially proposed by Courtois to attack DES. It can reveal some hidden linear equations existing in the ideal generated by the system. We report a number of key theorems on ElimLin. Our main result is to characterize ElimLin in terms of a sequence of intersections of vector spaces. It implies that the linear space generated by ElimLin is invariant with respect to any variable ordering during elimination and substitution. This can be seen as surprising given the fact that it eliminates variables. On the contrary, monomial ordering is a crucial factor in Gröbner Bases algorithms such as F4. Moreover, we prove that the result of ElimLin is invariant with respect to any affine bijective variable change. Analyzing an overdefined dense system of equations, we argue that to obtain more linear equations in the succeeding iteration in ElimLin some restrictions should be satisfied. Finally, we compare the security of LBlock and MIBS block ciphers with respect to algebraic attacks and propose several attacks on Courtois Toy Cipher version 2 (CTC2) with distinct parameters using ElimLin.
منابع مشابه
Sweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملQUICKSELECT Revisited
We give an overview of the running time analysis of the random divide-and-conquer algorithm FIND or QUICKSELECT. The results concern moments, distribution of FIND’s running time, the limiting distribution, a stochastic bound and the key: a stochastic fixed point equation.
متن کاملStatistical and Algebraic Cryptanalysis of Lightweight and Ultra-Lightweight Symmetric Primitives
Symmetric cryptographic primitives such as block and stream ciphers are the building blocks in many cryptographic protocols. Having such blocks which provide provable security against various types of attacks is often hard. On the other hand, if possible, such designs are often too costly to be implemented and are usually ignored by practitioners. Moreover, in RFID protocols or sensor networks,...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملAlgebraic Fault Analysis of Katan
This paper presents a new and more realistic model for fault attacks and statistical and algebraic techniques to improve fault analysis in general. Our algebraic techniques is an adapted solver for systems of equations based on ElimLin and XSL. We use these techniques to introduce two new fault attacks on the hardware oriented block cipher Katan32 from the Katan family of block ciphers. We are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012